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FOR NONLINEAR EIGENVALUE PROBLEMS
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Abstract. A variant of the classical pseudo-arclength

continuation method is proposed. Basically, the method can

be viewed as pseudo-arclength continuation in (r,X)tspace

where r is a functional of the solution. Another difference

is a three-parameter predictor instead of the standard Eulerl

step. This predictor, as well as the Newton corrector .

. ~ ~Iteration, are justified and some numerical results for

reaction-diffusion equations are presented. The method

provides a simple algebraic check for symmetry-breaking

bifurcation, the most common type of secondary bifurcation .

in physical examples.

Keywords: parameter-dependent boundary value problems,

continuation algorithm; singular points; symmetry-breaking

bifurcation; reaction-diffusion equations.
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1. Introduction

Boundary value problems for partial differential equations

that describe phenomena in many fields of application are

usually nonlinear and depend on one or several parameters of

I the underlying system. These parameters enter in various ways.

The coefficients or right-hand sides of the differential

equations may depend on them, the boundary conditions or, for

example, the domain. With respect to these parameters, in gen-

eral, bifurcation and non-unicity effects occur. For a list of

different problems from the applications as well as a first

introduction to analytic and numerical aspects we refer to [8].

A survey of the state of the art may be obtained from [7].

Frequently, the only way to explore the solution manifolds

of these problems is to continue along the solution branches, _ L

* in the case of multi-parameter dependence, with respect to one

of the parameters for fixed values of the others. This

approach yields a quantitatively satisfactory approximation if,

for example, suitable discretizations are used, while it may be

difficult to get a full qualitative impression in this way.

Other analytic techniques yielding the latter but not also a ..

. quantitatively useful result, may well supplement the numerical 770

J* %
methods.

'a %'.

For the continuation along solution branches, different

methods have been proposed and applied. We restrict considera-

tions here to the methods introducing an arclength-like

additional parameter. One of the earlier and frequently

referenced papers is [6]. To be more specific, let the

% .".
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parameter-dependent nonlinear problem be given by

(1.1) G(u,ca) = 0

where u is an element of a Banach space X and G maps XxR p Into

X. We denote by X the component of a that is presently not

fixed and, for simplicity, suppress the others. The pseudo-

arclength method of [6] then introduces an additional parameter

a and augments (1.1) by a normalizing condition

G(u,X) = 0,

(1.2)

N(u(a),X(a),a) 0

Thus, u as well as X are locally parametrized by a. In the

following section, we will Introduce a slight modification of

this approach. In applications, one is frequently interested _

in a functional of u, for example, a norm, the value of the

definite Integral of u over some region, etc. This quantity .".*

may represent a physically important parameter just as the

components of a. For graphical representations also, usually -A

such a functional Is depicted versus one or two of the a's.

Using a functional of u, therefore, Is not equivalent to

introducing another artificial parameter.

After Introducing the basic continuation method, we

discuss a new predictor to be used in conjunction with it In

Section 3. An analysis of the corrector Iteration is given in

the following section. and in the last section, some numerical

results are presented.

4-!
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2. The Continuation Method

For the problem

(2.1) C(u,X) = 0, G:XxR + X

let s denote the arclength along a solution arc (u(s),X(s)).
,. " % %

Under sufficient smoothness and regularity assumptions this . i

latter dependence Is differentiable and thus (Go = Gu(UO,XO))

2.2 a) GO + GO0

2 2 

l

(2.2b) u + A0 = .1

in a solution (uo,X O ) = (u(so),X(so)) of (2.1). Here, sub-

scripts stand for partial derivatives and a dot for differen-

tiation with respect to s.

In [6] it was proposed to augment (2.1) by the following

normalizing condition:

(2.3) N a (u,X,a) - uO(u-u0) + (2-6)! 0 (X-X0 ) - a = 0

which approximates (2.2b). a is thus called the pseudo-

arclength parameter. 6o Is the steplength In a. B satisfying

0 < 6 < 2 was meant to be a weighting parameter.

Let r(u) denote a functional of u. For simplicity, let

(2.4) r(u) 1ul

* *1-
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where II-I is the norm of u which we assume to be differenti-

able. Other functionals may be chosen, as for example, in VLSI

problems ([2 ), but In the following we restrict considerations

to (2.4). Quite frequently, this parameter is used in a graph-

ical representation of the solution manifold and also has a Vt"

physical significance.

The following augmenting equation leads to a pseudo-

arclength method in (r,A)-space.

(2.5) Nr (u, ,o) eor (r-r O ) + (2-6)1 0 (X-X o ) - = , .

*dwhere 0 < B < 2, r 0  UII r0 = (- lu a = 00.
_,d

While the classical pseudo-arclength method with Euler

predictor using (2.3) is in general optimal in a local sense

among continuation procedures utilizing only first derivatives

and depending only on one parameter, in this case the step-

length along the tangent, (2.5) will be combined with a more

expnsive predictor to yield in many examples a better global

continuation behaviour. This will be demonstrated in 5.

Let us assume from now on that X is a Hilbert space,

sufficient regularity is given, and ;I- = (.,.)I2, then

(2.6) ; 0  = (u 0 ,u 0 )/r 0 .'

From (2.5) we see that the three values 0,1,2 for 6 are special

in the sense that for e = 0 (2) the augmenting equation

characterizes points with a fixed X(r)-value, while for 9 = 1

., . ,.%.
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the points lie on a hyperplane orthogonal to the solution arc

In (ro, XO).

This suggests to continue to target values in the two

physical parameters r and A. Such a strategy seems appropriate

as long as starting from a point on the solution curve another '.

point corresponding to a suitably picked target value can be

computed in a few number of (corrector) iterations. This will,

of course, depend on the starting guess and thus on the method

used for predicting this point. Only the combination of (2.5)

with the predictor presented in the next section makes this

continuation the effective and powerful algorithm it has proven

to be at least for a series of problems from the applications.

3. The Predictor

In continuing from a point (uO,X 0 ) on a solution branch

most continuation methods first generate a starting guess

(u ,X ) and then iteratively determine a new solution point.
P p

The pseudo-arclength method in its standard version uses a

first order Euler predictor

u 0 + S a u[ , _ .-

(3.1) \) = kX
X" 0 +  6 0 ":0"

p

Subsequently, the augmented system (2.1), (2.3) is iteratively

solved ('corrector'). The computed solution for 8 1 is thus

located in the intersection of the solution manifold and a

Thyperplane perpendicular to the tangent vector (JOXO) at the .%

V. 0..
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previous point and a distance 6a from this point. It is not

Immediately apparent how the parameter 6 would have to be

chosen to improve the quality of the predicted point.

It Is clear that with respect to the information used,

namely u 0 and X 0 , the Euler predictor step is locally, i.e.,

for 6a + 0, optimal, but that, for example, in highly curved

parts of the solution arc, only a rather small 6o will lead to

convergence of the corrector iteration.

In order to improve the quality of the predictor either a . N.,.

higher order method making use of higher derivatives of G may

be used or In some other way, it has to be assured that the

predicted point better approximates a solution of the nonlinear

eigenvalue problem. The first approach is suitable in particu-

lar if the nonlinearities have a simple form as, for example,

low order polynomials. Here, we propose to make use of only

the first order information also used in the Euler predictor.

Instead of a single parameter, three are used in

U (1+y)u + u0 .
C(3.2)

0 + 0._.

pN

In case a 6 B, y = 0 the predicted point is in a non-tangential

direction from (u0 ,X0 ). This is slightly more general than (3.1)

but, of course, treats X as a special variable as opposed to

methods that, for a finite-dimensional problem, give X no prefer-

ential treatment ([12]). The justification for (3.2) can only be

that X, in fact, represents an important physical parameter. -p ...

I-... ;



% %°. *

-7-

More explanation is needed for the coefficient of uo in

(3.2). Before this will be done, we complete the definition of

the predictor. A system of three equations is used to

determine the parameters a, B and y. %

N(u ,x , ) ='0

(3.3) (u 0 ,G(u ,X )) 0
p p

(u , Gu , )) = 0 .. ,,,(uO, G.(Up PX .0

p p

In addition to the normalizing equation, two orthogonality

relations with respect to the scalar product on X are imposed.

The basis for these equations is twofold. First, it assures

that the predicted point is a weak solution of (2.1) with

respect to the subspace spanned by u0 and u0 . On the other

hand, (3.2) shows that

(3.4) (Up, G(u ,X )) = 0
p p p

holds, which defines a generalized Rayleigh-quotient. V-

The system (3.3) in general need not have a solution

(a,a,y) or such a solution is not necessarily unique. If, for

example, u0 and u 0 are parallel, then the rank of the Jacobian

of (3.3) is at most two. Therefore, a least squares solution

of (3.3) is to be computed. In order to be able to analyze

several important features of the continuation method, we have

.. ."'J-7
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(3.8) (CIO + 2bEI)I 0  0

hols her c (GVOVO + 2G vo + G) and E 12O

The two solution branches passing through (u0 ,Xa ) are thus

given by

W, (.9) u s) uO + (S_5 0)19 vo + ~I O + O((s-s0 )

X~ S A 0 + (s -s) 0 + O((s-so) 2)

These pitchfork bifurcation points are not generic in the sense

that they are in general not present under perturbations of

the problem as, for example, introduced by a discretization.

An even further specialized class of bifurcation points, the

symmetry-breaking bifurcation points, however, have this

property.

ILet us assume for simplicity that S is a linear operator

2
on X, 5 1 , S * I such that

(3. 10) G(suX') = SG(u,X), for all u X, X c R

Then X may be split as

(3.11) X = X
s (DXa

where \ l u E X, u = Sul contains the symmetric elements with i

respect to S and X a {u E: X, U= -Sul ,the anti-symmetric .. *

elements. The pitchfork bifurcation point (u 0 ,Xo) is then

symmetry-breaking if

e,.r* a
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(3.12) uo X , v0  C X s  , 0 X a -

On the branch corresponding to the solution 10 = 0 of (3.8) It

thus holds that .,F

(3.13) U + ± Xa a~

while on the other branch c = 0 implies uo C X • On the
S .. 4.

symmetry-breaking branch we have from (2.6) if S S*-
-.4% -

(3.14) 0 = 0, r 0 = 0

and thus, in this case, N in (2.5) is not well defined. Ther

restriction to the two-dimensional (r,X)-subspace introduces

additional singularities that are not present in the classical 4. I

pseudo-arclength method. A natural modification is to intro-

duce as a parameter the norm of the anti-symmetric part u of u

corresponding to the splitting (3.11). This was done explicit-

ly in [I0]. Since on the branch of nonsymmetric solutions N f %e%

u a U C X a asymptotically in the bifurcation point from .

(3.9), we propose instead in the general case to use N = N in

(3.3) whenever r;0 11u01 is small. 4."

Let us assume now that starting at (uo,Xo) a point (u,x) P "ME

on the symmetry-breaking branch with r = !lull < r0  = lluo l

is to be computed. For y = 0 (3.2), (3.12), (3.13) imply that

always tu pl1 > r 0 . This is one of the reasons that y was

.4.4

S.--

• • . . . , . . . ° . . -* 4~ .44 - - " "- ". -%..* .' " %4% .." 4" .L % .%. % ,X4%". .% %.4. % %

a. .
.

4
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Introduced in (3.2). Another reason Is that in the linear "

eigenvalue problem, computations along the elgenfunction

branches require a renormalization only and are not prone to del

cancellation if in the predictor step u is actually obtained ..
p

by renormalization, i.e., 8 = 0 in (3.2).

Let us summarize the normalizing condition that is

proposed in the various cases.

Vo0 < E luou: N = NO, e * 0
Fol.

(3.15) , > (1-0)9l 0 11: N =N . 0, s 0
0i r

C l 0 (1-)lu 11: N : N r 0 < e < 2 .

In the following section, we will address the question of

the regularity of the corrector 3acobian in the various cases

of (3.15).

4. The Corrector

The point (u px ) computed by the predictor described in

the previous section is used as usual as starting guess for an

iterative solution of the augmented system (3.5). This is done

by Newton's method and thus the Jacobian

( u ,.
(4.1) F .

N N/
u

Pt, 1

--.---r--

,' .. - ,. ., " , " '., ", " ',.',.?,.''-'." ., . ,." ." .'v ."." ".% "... " '-.,,' -.".'p '"*'
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has to be evaluated and inverted. The following lemma Is a

simplified version of Lemma 2.8 In [6].

5 Lemma 4.1 Let X be a Banach space and consider the linear

oprtrAYxR? -' X of the formNe

A 'C* D)
; .. . -.

where A: X X, B: R + X, C*: X + R, D: R + R . .-. C

(i) If A is nonsingu]ar then A is nonsingular iff

(4.2) E = D - C*A- B is nonzero.

(ii) If A is singular and dim N(A) = codim R(A) = 1 then

Is nonsingular iff

(4.3) B f R(A), C* R(A*)

Proposition 4.2 For an appropriate choice of the continuation
parameter, i.e. X respectively r, F in (4.1) is regular

y *'%*** ,,%

except at bifurcation points.

Proof The quantity E in (4.2) is easily computed as

E= (2-0)10 + /0 0 if N = N . If we accept as an appropri-0 r

ate choice of the continuation parameter not to pick r respec-

tively X to continue past a turning point in r respectively X

then we have 0 * 0 if 10  0 respectively 0 * 2 if ;0  0, S

."~.".-."

.... ="
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that F is regular in regular points for N = N . In bifurca- 4
y r

tion points G Xc R(Gu) so that F is always singular from (4.3)

for N = N r and N = N . It remains to consider turning points.

If lo = 0 and G R(G u ) then the last condition in (4.3)
• .... • _1.. 2

is equivalent to (Br9ouo/r o ,uo) = Or0 * 0 . So if 6 i 0, r0  0
* ?" .*%

then F is regular for N = N unless rO = 0. This situation
y r

occurs in symmetry-breaking pitchfork bifurcation points. .
.~ -

These points appear to be the most common type of secondary

bifurcation in physical examples. Finite dimensional problems

exhibiting secondary bifurcation often arise from symmetry

preserving discretizations of such continuous problems. It is,

therefore, important that the continuation method can handle %

these points. In addition to that, the proposed algorithm

allows to detect these points by checking (3.14). We refer to

Example 1 in [11] where two symmetry-breaking bifurcation

points are computed and to the second example in 5. According

to (3.15) N = N is chosen in these points since N is not
a r

well defined. If the point is not a bifurcation point both

conditions of (4.3) are satisfied and F y is again regular.

The above proposition does not specify in any more detail

what happens in bifurcation points. If we consider F- I in the
y

neighbourhood of a simple bifurcation point y = y(s0 ) and

measure the growth of ;IF- ji as a function of (s-So)- 1  as in [4]
y

then we obtain the following result along the lines of proofs

in [4,5].

%%" _- ,2
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Proposition 4.3 If the normalization condition N is chosen

according to (3.15) then on any of the branches passing throuQh

a simple bifurcation point yo = (u(so), X(so)) of (2.1) for

6 > 0 sufficiently small A

(4.4) !IF (y s(0))II = 0 < i -o

The growth behaviour of (4.4) allows the application of the ..-

Newton-Kantorovich theorem to show convergence for the starting

point obtained by the Euler predictor ([4]). For the combina-

tion with the predictor (3.2), (3.3) a different analysis would

have to be done. One of the facts that complicate such an

analysis considerably is the least squares solution of (3.3).

We do not present such a theory here and refer to an illustra-

tion of the practical merits of the method by the numerical

results in [11] and in the following section. t "

5. Numerical Results

We present here only a demonstration of the behaviour of

the proposed continuation method. The method was developed

and implemented in the program PLTMG [1] in cooperation with e

R. bank. The class of second order nonlinear parameter-

dependent boundary value problems solved by PLTMG includes many W'A
-.

interesting applications.

It is of interest how the continuation method proposed

above compares to standard methods as, for example, the

I ,- '.- , \ ...', .\ ... , . '-'..''-.';'-.'-''.-'..L- '.w ''--''"'-' ' "', " " " "; "-"/ 2 ' . '..-. L?,,.-.,,%
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classical pseudo-arclength method, e = 1 in (2.3). The gener-

alized Inverse iteration ([9]) that strongly influenced the

method presented here was compared to different continuation

methods In [9] and to a predecessor of the present method using

a two-parameter predictor and (2.5) in [I]. The latter paper
" P 1

also contains comparisons with a variant of the generdliZed

inverse iteration in the neighbourhood of symmetry-breaking

bifurcation points.

An extensive comparison of the present method with the

pseudo-arclength method Is beyond the scope of this paper. We

restrict the consideration to one example exhibiting turning

points and thereby illustrate the advantages of a multi-

parameter predictor. The second example has a more complicated

solution structure and serves to demonstrate the computation of

singular points, the switching of branches at bifurcation

points, the detection of symmetry-breaking bifurcation points

and the switching of continuation parameters in a multi-

parameter problem.

The first example is the two-parameter Bratu problem

(5.1) Au + Xexp(u/(l+Eu)) in Q ,.-'-.

on the unit square S1 with homogeneous Dirichlet boundary condi-

tions. This problem was solved frequently (see, for example, .

(3,11]). For c = .1 the solution curve has two turning points

and we present results for continuing up to and beyond the

,-.r.0.-...:
% %C-o,,....-. , .,., -.. , ... . . .. . .. . .. . ... .. .. ....

L . INm
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first one. We point out that this turning point is far from

being nearly angular and therefore does not cause particular

difficulties for the pseudo-arclength method. For a case of a
*

nearly angular turning point, see Example 2 in [11].

On a standard triangulation of Q, with 25 vertices, we

have discretized (5.1) by linear finite elements. The result-

ing finite-dimensional system was first solved by the pseudo-

arclength method starting at the origin. We assumed that the

step-picking procedure does not cut back the steplength a in

the Euler predictor, i.e., a = $,y = 0 in (3.2), enough near
* .. "..'

the turning point to avoid failure of the corrector iteration.

In this latter case, the steplength is cut back by .5 until the

corrector converges. In the last column of Table 5.1 the num-
2%

ber of corrector iterations is listed and an asterisk denotes p.".

failure to converge after the given number of iterations while ,.

two asterisks denote failure to yield a descent direction for

the damped Newton process.

Subsequently, we have used our continuation method to

continue from each of the points In Table 5.1 below the turning

point directly to the point above that with 'u!! = 2.61 which
,-4- .4'..

was finally reached. The results in Table 5.2 show that at

most 3 corrector steps are needed. The three predictor parame-

ters are also given to show for this example the effect of

introducing y and the early 'detection' of the turning point

.,.

-,,. -, - ,, -, . 4 -. , &. _ ,. . .. -, .m-J. .- . _- --.* -'..i& ,, , .# -*-.- . - ., . a,-', .
-

,-. -,.m- w.--



throgh neatie a Wenote that for the coarse discretiza-

tion used the first turning point In case c = .1 is at (X,r)

Ar a r it

0 0 1 0 1 1

1 .04 .999 .042 5 2

.46 .343 .995 .095 2 3

8 .646 .959 .282 .665 10*

.332 2

8.28 .772 .847 .531 .920 10*

.460 10**

.230 10**

.115 2

8.37 .848 .596 .803 1 .49 10*
.745 10*

.373 10*

.186 4**

.093 2
8.40 .943 -. 125 .991 2.09 4

4.91 2.61 -.894 .447

* Table 5.1 Continuation with the pseudo-arclength method
f or (5.1) E: 1

N N.
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* .-.. J,

1 .999 4.40 .17E-3 64.3 3

6 .995 - .732 -.21E-2 6.58 3

8 .959 -2.96 -. 51E-1 3.01 2

8.28 .847 -3.70 -. 125 2.47 2

b. 37 .596 -5.54 -. 345 2.40 2

Table 5.2 Continuation with proposed method for each point

below turning point in Table 5.1 directly to
solution with norm r = 2.61

A suitable step-picking procedure may be able to reduce the ._

number of failing corrector iterations for the pseudo-arclength

method. But the fact remains that several small steps are

necessary to overcome the turning point. The next example has

a more complex solution diagram including bifurcation. It

illustrates several other features of the continuation method

and its Implementation.

Let 2 F be a domain that is obtained by connecting two

regions in the left and right half-plane situated symmetrically

%.r.t. the y-axis by a channel of width c such that I is

symmetric, too. Homogeneous Neumann boundary conditions are

prescribed along IQF,,

(5.1) -u = u ;u au - u3 in ,-

i€. ..-..

It%

410

V~

'. V i.
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The applications of this reaction-diffusion equation include In

particular a selection-migration model from population genetics

(cf.[13]). We are interested in the stationary solutions only.

The bifurcation behaviour of (5.1) w.r.t. the three parameters

EXa is given In [13]. For a = 0, for example, secondary

bifurcation takes place from the branch bifurcating from the

trivial solution at the first nonzero eigenvalue X of the

linearization of (5.1). For a * 0, and for this case some

results will be presented below, secondary symmetry-breaking

bifurcation occurs from the branch of constant solutions

*. .
4,. -- %

bifurcating at the origin.

Because of symmetry and the homogeneous Neumann boundary

Vcondition, it suffices to take as S1 a non-convex, say,

L-shaped domain with vertices (0,0), (1,0), (1,.5), (.5,.5),

(51 bifu(0,i). Thus, r is fixed and the parameters a and X are

left. For a > 0 the following schematic bifurcation diagrams

were obtained in [13j for a point value of u versusn y

• .% , .A

¢.' .

N

-" u

0< a2 < 8X <A a2 < 27Z X

Figure 5.1a Figure 5.1b
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The elliptic version of (5.1) was discretized on a, '.

relatively coarse triangulation h with 21 vertices and linear "-,

finite elements were used to compute the approximate solution

uh Better approximations at specified points of the solution

branches may be obtained through PLTMG by a multi-grid method. -.

The first nontrivial eigenvalue was X h= 6.73. In fact,

for a = 5 no secondary bifurcation was observed. For a = 9 the
two secondary bifurcations points in Figure 5.1b are located at

(X ,rj) = (-8.17,1.04) and (X2 ,r2 ) = (-14.6,2.42), while the

turning point is at (A3 ,r3 ) = (-16,3.46).

We present below the output of PLTMG for the following .

continuation. Starting on the trivial solution in X = 0 we _.

switch branches three times using Method I of [6]. On the

branch of constant negative solutions we continue to (X1 ,rl).
• '. .'- w'p.

There we switch branches once and continue on this branch of

non-constant solutions to (X,r) = (-11.5,1.6). Now we keep .

this X fixed and switch to a as continuation parameter. From

the value a = 8 we continue to smaller values. We expect to

first come to the constant solitlons and continuing further to

reach a point where no further continuation is possible. The

first happens between a = 7.5 and a = 7.4, as a more detailed

computation shows, while the branch ends at a = 6.78. If

instead we continue in r, then (a,r) = (6.78,2.94) Is a turning ...

point w.r.t. a as expected.

...' ** *

U .
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i t Xa r, det(G )

Switch branches three times.

1 O.O0OE+O0 O.OOE+O0 O.100E+O1 O.OOOE+O0 -0.105E+O0 -0.124E-05
0 O.OOOE+O0 O.OOOE+O0 0.994E+00 0.108E+00 -0.105E+00 -0.124E-05
0 O.OOOE+O0 O.OOOE+O0 -0.100E-O1 O.OOOE+O0 -0.105E+O0 -0.124E-05
0 O.OOOE+O0 O.OOOE+O0 -0.994E+00 -O.108E+O0 -O.105E+O0 -0.124E-05 "'.

Continue to r = 1, then to r = 1.5 and check sign of determinant.

1 -0.790E+01 0.100E+01 -0.989E+00 0.150E+00 -0.902E+02 0.435E-02
1 -0.109E+02 0.150E+01 -0.982E+00 0.188E+00 0.541E+03 -0.316E-01

Determinant changes sign; find bifurcation point by secant method on 6.

1 -0.860E+01 0.111E+01 -0.988E+00 0.157E+00 -0.128E+03 -0.651E-02
1 -0.794E+01 0.101E+01 -0.989E+00 0.151E+00 -0.766E+02 0.370E-02
1 -0.818E+01 O.104E+O1 -0.988E+00 0.153E+00 0.354E+O1 -0.174E-03 ell

Switch branches and continue to r = 1.2, r = 1.6.

0 -0.817E+01 0.104E+O1 0.484E-01 -0.639E-02 0.815E-01 -0.427E-05
2 -0.908E+01 O.116E+O1 -0.980E+00 0.142E+00 -0.652E+03 0.255E-01 '-
.1 -0.931E+01 0.120E+01 -0.982E+00 0.148E+00 -0.834E+03 0.312E-01
1 -0.115E+02 0.160E+01 -0.976E+00 0.220E+00 -0.197E+04 0.633E-01

Switch continuation parameter to a. Continue to a 7.5, then to r = 3 and
check sign of determinant.

1 0.800E+O1 0.160E+O1 0.829E+00 -0.419E+00 -0.197E+04 0.633E-01
3 0.750E + 01 0.187E+01 0.393E+00 -0.200E+O0 -0.183E+03 0.876E-02
1 0.678E+01 0.300E+O1 -0.481E-01 -0.999E+00 0.162E+04 0.17SE-01

Determinant changes sign; find turning point by secant method on det(G ).

1 0.679E+01 0.277E+01 0.146E+00 -0.989E+00 -0.218E+04 -0.469E-01 ,
I 0.678E+01 0.294E+01 -0. 398E-02 -0.100E+01 0. 110E+03 O. 142E-02 .
1 0.678E+01 0.294E+01 -0.307E-03 -O.100E+01 0.836E+01 0.109E-03 .
1 0.67bE+01 0.294E+01 0.844E-05 -0.100E+01 -0.232E+00 -0. 300E-05

Table 5.1 Continuation results for problem (5.1)

In Table 5.1, it denotes the number of (damped) Newton corrector

iterations, while 6 is a quantity that changes sign at simple bifurcation

points. We point out that aftPr switching onto the branch of non-constant

solutions, X and r are both ,inall, as expected, indicating a symmetry-

breaking bifurcation point (cf.(3.14)).

Acknowledgement: The author would like to thank the referees for valuable
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